
LA-UR-08-07314, LA-UR 09-02117, LA-CC-08-104

  Lots of tightly coupled parallel simulations
  Weapons design and verification

  Bioscience

  Astrophysics

  Require large computers w/ low latency interconnects
  Currently at a petaflop

  Simulations always want MORE resolution

  Already designing exaflop machines

  LANL’s petaflop supercomputer
  First to petaflop! (sort of)

  3060 compute nodes
  Quad-core opterons with cell accelerators

  Low latency infiniband for IPC

  High bandwidth ethernet for data storage

  5 miles and multiple tons of networking cables

  Large distributed systems are not free
  Some component is always about to fail

  Periodic checkpoint writes
  Also visualization writes

  Writes are synchronized

  Tens of thousands of synchronized writes can be
difficult for the file system

  Two most common write patterns
  N-1 where N procs write to 1 shared file

  N-N where N procs write to N non-shared files

  N-N
  Writes and reads easy for file system

  Opens can be hard

  Hard for application and user
  Archiving, non uniform restart, viz, etc.

  N-1 Segmented
  Writes and reads slightly harder for FS

  Opens easier

  A little easier for the application and user

  Rare in practice

  N-1 Strided
  Writes and reads very hard

  Easy for application and user

  Common pattern at LANL and elsewhere

Cross graph comparisons not meaningful

LANL
GPFS

PSC
Lustre

LANL
PanFS

45X

100 MB/s 10 MB/s

20 MB/s

4.5 GB/s 3.3 GB/s

330X

1.8 GB/s

90X

N-N
N-1

Parallel file

11 12 13 14

Process 1

21 22 23 24

Process 2

31 32 33 34

Process 3

41 42 43 44

Process 4

RAID Group 1 RAID Group 2 RAID Group 3

Potential PanFS storage
implications of N-1 strided

  Several old LANL codes use N-1 (over 50% of cycles)

  Newly written codes still choosing N-1
  2 of 8 open science applications on Roadrunner

  NetCDF and HDF5 formatting libraries

  N-1 also prominent elsewhere
  At least 10 of 23 on the PIO benchmarks page are N-1

  BTIO, FLASH IO, Chombo IO, QCD, etc. (GTC?)

  But many applications won’t do it

  Archiving, mgmt, visualization, non-uniform restart

  Developers are aware of the N-1 problems
  But are loathe to change to N-N

  One app wrote 10K lines of code, bulkio, to try to improve N-1

  If the apps won’t do it, interposition can

  Desirable characteristics
  Low overhead (performance and resource)

  User transparency (i.e. NO CODE REWRITING)

  Portable and maintainable

  Our contribution: PLFS

  Introduction

  PLFS Design and Implementation

  Evaluation

  Trade-offs

  Related Work

  Future Work and Conclusions

  Other outstanding problems in HPC

  Virtual interposition file system using FUSE

  Transparently rearranges N-1 checkpoints into N files
  Very similar to Lustre Split Writing

  Two main optimizations
  Decouples concurrent access

  Append-only writing

PLFS Virtual Layer

/foo

host1 host2 host3

/foo/

host1/ host2/ host3/

131 132 279 281 132 148

data.131

indx

data.132 data.279 data.281

indx
data.132 data.148

indx
Physical Underlying Parallel File System

Physical Underlying Parallel File System “PLFS Container”

131 132 279 281

PLFS (FUSE)
 PLFS (FUSE)

1)  All processes open file, foo
1)  Each PLFS mkdir’s foo
2)  Each PLFS mkdir’s

foo/hostN
2)  Processes start writing to file

1)  PLFS opens a data file per
process and appends write
data to them

2)  PLFS opens an index file
per node and appends
metadata to them

/foo/

/host1/ /host2/

/data.131 /data.132 /index /data.279 /data.281 /index

Data ID
 Phys Off
 Len
 TS Begin
 TS End
 ???

  Sort records by physical offsets

  Lookup map

  Sort records by timestamps

  IO Trace

  Writes are much better but
  Overall only improved if other ops not much much worse

  Reads
  Construct a global index by aggregating all the index files

  Map logical offsets to a physical offset within a data file

  Overlapping writes are undefined

  Chmods, Chowns, Chgrps, Utimes, etc.
  Use a container/access file

  Stats

  Pull permissions, ownership from access file

  Construct a global index to get file capacity and file size

!!!! Constructing a global index can be SLOW !!!!

  Reads
  When possible (i.e. O_RDONLY), construct global

index on the open, reuse for each read call

  Stats
  On close, create a container/metadata/host.B.L.T

  B = blocks of capacity

  L = last offset (i.e. file size)

  T = timestamp of last write

  Stat can be implemented with a readdir

  Invalidate cache on subsequent re-opens

  File Systems

  GPFS

  Lustre

  Panfs

  Synthetic Checkpoint Benchmarks

  LANL MPI-IO test

  NERSC Pattern-IO

  Applications and IO Kernels

  LANL1, LANL2, LANL3

  Office of Science
  FLASH-IO benchmark with HDF5

  Chombo-IO benchmark with HDF5

  QCD QIO

  NASA BT-IO benchmark

GPFS

PSC
Lustre

LANL
PanFS

25X
100X

8X

3000X
at scale

31 GB/s

With PLFS

Without
PLFS

Stripe aligned

64k block aligned

Unaligned

PLFS makes alignment and blocksize irrelevant!

FLASH IO

150X

23X

7X

150X

12X

5X

28X

83X

PLFS Checkpoint BW Summary

Read
Bandwidths

Uniform restart

Non-uniform restart

Archiving

Metadata rates

  Small file bandwidth due to open overhead

  Single node bandwidth due to FUSE/PLFS overhead
  Small job performance due to single node bandwidth

  Reads in read-write mode

  Possible reduction in read BW for strange read patterns

  Overlapping writes are not ordered

  Shift complexity to N-N challenge

  Directory striping to ameliorate N-N parallel open

  Overhead graph shows
  Problem for small jobs

  Lots of idle CPU for large jobs . . .
  Add compression to index record

  Add checksums to index record

  Add extensible metadata to index record

Data ID
 Phys Off
 Len
 TS Begin
 TS End
 ???

Interpostion
Technique

Used

No Extra
Resources

Used During

No Extra
Resources
Used After

Maintains
Logical
Format

Works with
Unmodified
Applications

Data
Immediately

Available

Parallel
Filesystem
Agnostic

ADIOS Library Yes Yes Yes No Yes Yes

stdck FUSE
No

(LD)
No

(LD,N)
Yes Yes Yes Yes

Neighbor FUSE
No
(M)

No
(M,N)

Yes Yes No Yes

Diskless Library
No
(M)

No
(M)

No No Yes Yes

ZEST FUSE
No

(RD)
No

(RD)
No No No No

Lustre
Split Writ

Library Yes Yes No/Yes Yes Yes No

PLFS FUSE Yes Yes Yes Yes Yes Yes

KEY: LD = local disk, M = memory, N = network, RD = remote disk

  3000 lines of (soon to be open-source) C++

  Installed on Roadrunner for Open Science

  Moving onto other production machines next DST

  Improves reads, does not slow down lookups

  Enables easy tracing

  Traces from all studied benchmarks now published

  Every real app tested significantly improved up to 300X

  Full paper available at http://institutes.lanl.gov/plfs

LANL2
FLASH IO

Chombo IO

LANL1

  Parallel open

  Resiliency

  Schedulers

  Scalable IO and MPI initialization

  Silent data corruption

  Programming models

johnbent@lanl.gov

